Promising Practice Profiles

RIDBC’s Teleschool—Early Childhood Invest to Grow initiative

Distance service delivery of early childhood intervention using interactive multimedia and videoconferencing

Royal Institute for Deaf and Blind Children (RIDBC) Parramatta (Sydney), NSW

2005

• Supporting families and parents
 • Early learning and care

Invest to Grow

Children with hearing and/or vision loss require specialist early intervention support yet families who live in rural and remote areas of Australia are frequently unable to readily access such services. There is a short supply of specialist educational and support services for children with sensory impairment, even in some large regional centres.

In response to this need, the Royal Institute for Deaf and Blind Children (RIDBC) has provided “distance service delivery” to the families of children with sensory disabilities, however, the inability to provide a comprehensive “real time” model has impacted on the level of intervention effectiveness. The wider availability of broadband digital technology now permits the application of modern videoconferencing transmission and interactive multimedia to support a more effective model of distance service delivery. RIDBC has pioneered the use of broadband and Next-G technologies to provide in-home videoconferencing to Australian families living in regional and rural areas. The successful use of digital technology to develop an innovative, modern distance service delivery model represents a promising practice profile with wide application.

The Royal Institute for Deaf and Blind Children (RIDBC) is Australia’s oldest and largest independent special education service provider. It provides educational services (including schools, school support and preschools) and early childhood intervention for deaf and/or blind children from the age of diagnosis.

The RIDBC Teleschool program is a relatively new project which seeks to provide families in rural and regional Australia access to the highly specialised staff and resources usually found only in capital cities and some large regional centres. RIDBC Teleschool evolved from an earlier project—the “National Remote Early Learning Project (ITG funded).”

The objective of RIDBC Teleschool is the provision of program services (including assessment, training, therapy, habilitation and rehabilitation services) to children with hearing and/or vision impairment, their families, carers and local case workers, so as to assist in the remedial treatment of impairment or the consequences of sensory impairment. The Teleschool model utilises the best evidence in distance service delivery technology and pedagogical processes to provide families living in rural and regional areas of Australia with the same level and quality of services they would receive if they lived in a metropolitan area.
Program provision

The Project provides families/ carers and generic local service providers with:

• between 1 and 1.5 hours of direct service provision per week (for 40 weeks per year)—usually delivered by interactive videoconferencing, or alternatively, by interactive web based activity or other telephony;
• learning/teaching/therapy materials;
• email/ telephone/chat contact;
• assisted visit to North Rocks campus for evaluation and/or;
• a visit to far site by RIDBC Teleschool Consultant for assessment and evaluation, where appropriate;
• consultations to far site service provider, where approved by family;
• responses to telephone, mail or email requests within 24 hours (or no later than Monday if request is received on a Friday); and
• individual family program plan which is updated at agreed dates.

Service delivery technology

One of the projects’ key initiatives has been to pioneer the use of videoconferencing and multimedia products in the delivery of distance services in order to cost-effectively expand the reach of highly specialised resources not usually accessible by families living in rural and regional Australia. The initial aim was to expand the service using studio and in-home videoconferencing. The project is now developed sufficiently to achieve the full integration of interactive multimedia into its service delivery model.

Services are delivered using a range of distance technologies including videoconferencing, the internet, telephony and surface mail. Families receive:

• videoconferencing for child assessments, individual or group (child/family) teaching/therapy sessions, and specialist support services;
• email and telephone/fax links for consultation and provision of advice and information;
• subsidised centre-based visits for additional access to specialist support services (with access to low-cost accommodation on-site);
• provision of resource materials in multiple formats (DVD, print, video, etc.);
• remote access to toy and resource libraries; and
• regular mail delivery of learning materials.

Practice description

In order to provide contextually relevant distance service delivery for each child, RIDBC Teleschool uses a staged model of assessment, provision, monitoring, consultation and evaluation. A brief practice description is provided below and is drawn from an outline of the approach written by McCarthy (2007) which is further supported by a detailed program logic (Dally & Conway, 2007).

Service activities

The “Learning Community” for Teleschool consists of any child (0–18 years) living in Australia who has a significant hearing or vision loss, their families and the local professionals who work with those families. Upon enrolment, families are encouraged to schedule a visit to RIDBC’s Sydney campus for familiarisation. Financial assistance for travel expenses and free on-site accommodation are provided to families to support their visit. Families are able to access a wide range of services on site during this initial visit including:

• meeting with their child’s teacher for intensive sessions and assessment if appropriate;
• meeting and interacting with other families through group sessions;
• accessing a range of professionals on site including Audiologists, Speech Language Pathologists, Occupational Therapists, Physiotherapists, Psychologists, Orthoptists;
• visiting preschools/schools, depending on the child’s age;
• accessing educational resources from the RIDBC toy libraries;
• accessing academic resources from the Renwick Centre Library; and
• attending appointments with Ear, Nose and Throat Surgeons and Australian Hearing Audiologists.
Families also have the opportunity to participate in a practice videoconference session, which can take place at one of six studios on site. This enables the family to experience the differences between a face-to-face session and a videoconference session, and, allows the family and teacher to discuss the implications of those differences. The session is also used to enable the family and teacher to explore their individual expectations for videoconferencing and to negotiate the roles each person will assume in future sessions. In addition to establishing a positive relationship with the family, the teacher and family can also agree on a weekly schedule of appointments for future videoconferencing sessions.

Commencing intervention. Initially, videoconferencing takes place in a studio near to the family home for one hour each week. In a studio session, families have access to a local technical support person who can assist them with any technical problems and can help the families learn how to operate the videoconferencing equipment. Studio sessions also provide families with an opportunity to become comfortable with working through videoconference. After 8–10 sessions, families are offered the option of in-home videoconferencing. Most families take up the offer of in-home videoconferencing as it reduces the amount of travel time necessary, allows greater flexibility in scheduling and provides the opportunity for other family members to participate in weekly sessions. In-home videoconferencing also allows RIDBC Teleschool staff to see family life firsthand and to teach parents how to enhance their child’s natural learning environment by encouraging interactions and communications with the people, and to assess the resources they have available to them. Viewing the family in their home environment also provides the teacher with additional insight into the family’s individual circumstances and may assist the teacher in providing more realistic follow-up suggestions for that family.

Weekly videoconferencing sessions enable the teacher to observe the family’s interactions with the child, monitor the child’s progress and offer suggestions for further expanding the child’s skills. Videoconference sessions may also focus on providing the parent with the information needed to understand their child’s hearing or vision loss as well as developing the skills needed to encourage the child’s development. A typical videoconference includes a number of elements such as:

- parent feedback on previous activities;
- teacher modeling of new activities and skills;
- interactions between parent, child and teacher;
- teacher coaching of the parent during parent–child interactions;
- review of video footage from previous videoconferences;
- suggestions for generalising the goals to the home environment;
- discussion of test results and reports from other professionals; and
- brainstorming ideas for further activities or future goals.

Videoconference sessions are not restricted to the parent and child. Often other family members such as grandparents or siblings, a carer, and/or a local professional will also attend the session. This enables all of the people involved in the child’s life to assist in developing the child’s skills in a variety of settings. Sessions are recorded and made available to families so they may review or share previous sessions with other family members or professionals. In addition, teacher/therapists may use this video footage to help parents reflect on their own skills, and to make more objective observations of their child’s abilities. Teacher/therapists can provide support to parents around knowing what to look for and how to interpret their child’s learning and development. This aids parents in developing their observational skills so they are able to watch their child’s response and accurately report on the child’s abilities and progress.

Prior to each videoconference, the teacher sends an educational package to the family. This package consists of a lesson plan outlining specific goals from the program, a description of activities for achieving the goals and relevant resources for completing the activities. These resources may include information sheets, books, toys, puzzles, DVDs and craft materials. Often print materials such as the lesson plan or information sheets are sent electronically allowing families to have immediate access to relevant materials. A duplicate set of resources is retained by the teacher to enable the teacher to model and explain the objectives of the lesson plan effectively during a video conference session.

Key elements of practice

Although the primary platform for service delivery is videoconferencing, the successful use of the technology is embedded within a practice model which is informed by the following elements:
• **Accessible, flexible and individualised service provision.** The program works because it allows families who live in rural and regional areas of Australia to access a highly specialised early childhood intervention multidisciplinary team either from their local area or from their home. Without this service families may have to travel to distant locations to access a similar level of service. The costs in travel expenses and time may restrict access to such services anyway. The program offers a comparable service to that found in capital cities. RIDBC Teleschool employs teaching staff with a wide range of skills and experience. The staff includes teachers of the deaf, teachers of the vision impaired, Speech Pathologists, Auslan interpreters, Signed English teachers, Auditory-Verbal Therapists, Early Childhood Educators and a medical specialist. Having a staff with such varied expertise allows RIDBC Teleschool to cater to the individual needs of each family. Multimedia production staff provide additional capacity to work with teachers and therapists to create teaching and other support tools (e.g., DVDs, CD-ROM) to address the specific needs of one child or a group resource.

• **Family centred practice and a partnership approach to planning.** RIDBC Teleschool uses family centred practices to deliver early childhood intervention support to families, carers and local generic service providers via modern distance communication technologies. Unlike the traditional “professional centred philosophy” traditionally utilised, the Teleschool sees parents/carers and other family members as active participants in the child’s intervention. Parents who combine their existing knowledge of their child with new skills introduced by the teacher are more likely to become accurate reporters of their child’s progress and may feel more confident in sharing their observations with other professionals who are working with their child. Families are also supported through the provision of regular programs and reports outlining the child’s progress. Goals from the program are developed and reviewed jointly between the teacher and the parent and may include input from other professionals as well. Indeed, ongoing collaboration with local service providers is an inherent aspect of the model.

In addition a number of organisational and service delivery factors have been seen to have facilitated the performance of the program over time:

- a broad range of mediums through which support could be offered;
- the establishment of dedicated facilities to conduct videoconferences;
- the resources and technologies that are constantly being developed;
- alternative methods of assessment (on-site or via videoconferencing);
- the provision of on-site accommodation for families to visit North Rocks;
- the specialist knowledge of RIDBC staff about vision and hearing impairment;
- the caring, commitment and availability of RIDBC staff (Dally & Conway, 2007).

The following diagram illustrates the current model of service delivery:
Research base

The need for early intervention

Children with hearing and/or vision impairment require specialised early intervention support (Sass-Lehrer, 2002; White & Telec, 1998). Access to transdisciplinary services in the early years of a child’s life lead to better outcomes for both children with disabilities and their families (Briggs, 1997). Indeed, research has shown that early diagnosis and intervention in children with hearing loss leads to more natural language development (Yoshinaga-Itano, Sedey, Colter, & Mehl, 1998). For children with vision impairment or blindness, early specialised intervention is needed in all areas of development and must offer the child experiences and opportunities for independent and active learning (White, 1998).

Research data indicates that outreach services to families in rural areas of Australia are limited and that a lack of therapy services affects the effective functioning of early intervention teams in providing services to meet the needs of young children with disabilities (Hemmings et al., 2004). A 1998 review of therapy services in NSW revealed that “major gaps exist, particularly in rural areas due to difficulties in recruitment and retention (of therapists)” (Mather & Associates, 1998, p.18). Since that study has been undertaken, professionals with appropriate qualifications and experience continue to be in short supply in regional and rural areas across Australia (Commonwealth of Australia, 2003).

It is important to optimise development during the prior-to-school years in order to prepare children for success at school. The transition of children with disabilities to the school context places additional burdens on families and effective collaboration among services has been identified as an important component in facilitating the transition process (Conway et al, 2005).

The use of videoconferencing in distance service delivery

Although videoconferencing is relatively new as a technology used to support distance service delivery, several recent studies have found that it is both efficient in promoting learning (Burke et al., 1997; Martin, 2005; Smyth, 2005) and cost effective (Twigg, 2003).

The strengths of videoconferencing for distance service delivery are that it:

- provides access to instruction and consultation to clients/students who are located at a distance from an educational/therapeutic service provider;
- reduces or eliminates travel time and expenses for clients/students who would be forced to travel outside their local area to access services;
- provides a physical, visual presence for the client/student located at the far site (in contrast to audio- and web-based forms of service delivery);
- allows the consultant/teacher to import other resources into the visual space (e.g., invite psychologist and/or orthoptist and/or audiologist to join the transmission; a bridged videoconference allows others from other sites to join in the transmission);
- supports the use of diverse media (e.g., photos, videos, text, graphics, computer-based presentations); and
- expands an organisation’s educational/therapeutic reach (Motamedi (2001).

In a hierarchy of distance learning technologies videoconferencing with two way visual and audio feeds is considered to be at the forefront with its potential for: high realism and interactivity; the capacity to record sessions for later examination, instruction, reflection; and the incorporation of multi-media material in presentations (Florida Centre for Instructional Technology, 1999).

Trier (1995) identified several key factors which underlie effective practice in distance delivery, including:

- extensive pre-planning and evaluation of the student/s needs (i.e., distance instructors need to be well-prepared and organised—the distance instruction modalities are not conducive to “winging it”);
- the use of well-designed and organised multi-media presentations contribute to learning (distance instruction modalities such as videoconferencing allow for easy use of a range of instructional visuals and graphics to support the presentations);
- instructors who are properly trained both in the effective use of the multi-media equipment as well as the “pedagogy” (the method or practice of teaching) that has proven effective in the distance instructional model (e.g., in videoconferencing,
learners get much more when the instructor can effectively control the visual narrative and capitalise on the strengths of modern multi-media presentations).

The fourth generation: Interactive multimedia

In his conceptual framework of models of distance learning, Taylor (2006) identified interactive multimedia as the fourth generation of technologies that provide the conduit for the delivery of learning experiences. An important part of Taylor's argument is that the technologies are just that—"conduits" or delivery vehicles. The real issue in learning is, according to Taylor, the quality of the instructional message.

In essence, the fourth generation of delivery technologies for the delivery of distance learning allows technology-mediated flexible learning to take place. However, it is the quality of the interactive multimedia learning packages which will determine the effectiveness of that learning. Pedagogical issues must, therefore, take centre stage in the design of the instructional/learning packages. Taylor (2006) draws on advances in knowledge engineering, novex analysis (a cognitive science approach to instructional design), concept mapping and artificial intelligence as pointing the way for the development of highly effective learning packages within a modern distance learning model.

Relevance to deaf students

When teaching sign language, or dealing with speech and language issues for children with severe hearing impairment or deafness, distance education must involve a visual presentation to achieve full effectiveness. In a review of distance education for deaf students, Parton (2005) identified videoconferencing as the most common and successful form, "videoconferencing provides remote participants with face-to-face familiarity that comes with physical presence, including facial expressions, body language, and eye contact" (Parton, 2005, p. 2).

There are now several projects for deaf children that utilise videoconferencing to bring educational services to rural areas. In the US, Washington State’s Shared Reading Video Outreach Project (Hatfield, 2000) is a good example. This project concentrates on reading taught through sign language and has enrolled more than 170 deaf children aged from 2 to 10 years. The project set up 23 videoconferencing sites in rural areas and has been operational since 1997. Other projects, such as Kentucky State’s "Crossing the Realities Divide", provide mentoring programs for new graduates in deaf education via videoconferencing (Polycom, 2003).

Relevance to deaf/blind children

The Project for New Mexico Children and Youth who are Deafblind (University of New Mexico, 2005) uses CU-SeeMe software to conduct IP-based videoconferencing to provide technical assistance, training, distance education, and networking information to families, service providers, and individuals, birth through 21 years of age. In common with services for blind children, this service primarily targets parents and generic service providers.

Outcomes

The Early learning Program which underpins the RIDBC Teleschool model is supported by a program logic diagram (Dally & Conway, 2007) which articulates high level outcomes, project outcomes and project outputs.

The higher level stated outcomes for the project are:

- a demonstration model of cost-effective service delivery of highly specialised resources to families in rural and regional Australia;
- increased reach of scarce and highly specialised expertise;
- easier access for families, carers and local generic service providers to resources which are usually only available in capital cities and some large regional cities;
- the combining of modern communication technologies and interactive multimedia to produce an innovative and highly effective distance service delivery vehicle to the benefit of families with children who have significant sensory disabilities;
- a sustainable model of distance service delivery (in-so-far as the model may be improved upon continuously as new breakthroughs in technology allow cheaper and better transmissions);
- a replicable model of distance service delivery which can be used to bring many other scarce specialised resources to rural and regional Australia; and
- a model that contributes further to the existing evidence base in distance service delivery generally and early childhood intervention in particular.
The project outcomes are:

- increased knowledge, skills & confidence of parents to care for children with a sensory disability;
- enhanced developmental progress and improved access to learning for young children with sensory disabilities; and
- better informed, more confident and more effective early intervention services in rural and regional centres.

Evidence of outcomes

As of August 2007, the RIDBC has provided services to 62 children (and their families) and 70 local service providers.

Emerging outcomes

An external evaluation is being conducted by the University of Newcastle and this section of the profile provides a brief summary of the findings to date focussing on project outcomes, as recently documented in the interim evaluation report (Dally & Conway, 2007).

A mixed methodology is being used to identify process and impact outcomes of the project. Utilising questionnaires and follow up interviews, the perceptions and experiences of a sample of 20% of the members of two stakeholder groups (families and local service providers) are being identified. In addition, RIDBC staff and management are being interviewed at the beginning and end of the project. Supplementing this data, the evaluators are utilising case study material to illustrate the impact of the service delivery model on the lives of six children.

The results of the evaluation to date provide evidence of new developments in distance education pedagogy and technology as well as improved outcomes for families, young children with sensory disabilities, and local service providers. A range of teaching practices and materials have been developed to deliver training to parents and to local service providers. These materials and resources have been effective in assisting parents and service providers to implement effective programs for young children with sensory disabilities. A range of technology options has also been developed to establish videoconferencing links in remote locations.

The outcomes for families include a greater sense of competency in parenting skills, greater confidence in their ability to care for their child’s specific needs, and a sense of empowerment in coordinating and implementing their child’s educational program. The 19 families surveyed to date were unanimous in their belief that the program had helped them to improve their knowledge and understanding of sensory disabilities and their competency and confidence in interacting with and educating their child. The family interviews revealed a broad range of the knowledge and skills which families gained through their involvement in the program. These included information about:

- managing behaviour;
- adapting daily routines to incorporate learning experiences;
- new types of games to play to enhance sensory development;
- ways of reading books and singing songs to enhance children’s participation;
- how to purchase suitable and effective toys;
- using visual cues to signal choices with food;
- understanding children’s learning styles and how to accommodate these; and
- the impact of hearing and/or vision impairment on the child (Dally & Conway, 2007).

The outcomes for children have been improved development across a range of domains, particularly communication skills and social interaction. The family surveys revealed that in 16 out of 18 cases, the program helped the children involved to improve their cognitive, communication, social and play skills. The two parents who indicated the program had not helped their child to develop in these areas reported that the young age of the child and/or the severity of the child’s disability were such, that progress was very slow. However, it should be noted that these same parents commented favourably about the emotional support they received from RIDBC staff which helped the families in accepting, understanding and accommodating their child’s profound disability. As evidenced in the RIDBC staff interviews, in cases of profound disability, the strategies suggested by staff were often related to adapting the environment or changing daily routines so that the child can be more effectively included as part of the family, even though this may not lead to significant or noticeable improvement in the child’s functioning.
To date, the outcomes for local service providers have included an increase in professional skills and knowledge and the establishment of a supportive and collaborative network with other agencies and with families. The sample of service providers who responded to an initial survey was small ($n = 14$). Data on the extent to which the RIDBC program has assisted service providers was mixed, with approximately one-third of service providers indicating that the service has not helped, another third feeling it had been of some help and another third saying that it had helped to a great extent. The service providers judged that the most helpful aspects of the program were plans and ideas from RIDBC staff as well as the specialist toys and resources that would not normally be available in their remote locations or through their own organisations. Preliminary feedback from the subsequent service provider interviews indicates that the service providers were often starting from a higher knowledge base than the parents. Thus, the service provider’s assessment of the skills and knowledge gained from contact with RIDBC was moderated by perceptions of their own existing professional competence. The service providers themselves were typically highly qualified professionals in their own right, with considerable experience in fields such as Early Intervention, Speech Pathology, Hearing Impairment or Social Work. However, the task of providing family support or appropriate educational programs for children with sensory disabilities aged from birth to five years was often regarded as “new territory” and particularly challenging for these professionals.

Although the expertise and specialist knowledge provided by RIDBC staff appears to be highly valued by the service providers, it is also considered as a “supplement” to their own substantial knowledge base. The service provider interviews have also revealed that in at least two of the cases where the survey responses indicated the program “has not helped”, the service providers were not engaged in ongoing contact with RIDBC and their only involvement had been to refer families to RIDBC for more specialised services. The professionals in these cases were social workers and their role did not encompass involvement in developing educational programs or “hands-on” work with the children.

In the majority of cases, collaboration between the service providers and RIDBC staff appeared to be functioning effectively, with survey respondents indicating that they had regular phone or email contact or opportunities for videoconferencing and that the relationship was a partnership in which each party learned from and also assisted the other. The local service providers saw themselves as having a more direct impact on the family and child because of their more frequent and face-to-face contact, but the services they provided were enhanced by the specialized input received from RIDBC. Similarly, service providers were able to convey to RIDBC some of the factors affecting families in remote locations and this information assisted RIDBC in developing context-appropriate strategies and solutions (Dally & Conway, 2007).

Evidence of other outcomes

The project’s success has also been evidenced in additional applications that have emerged as RIDBC Teleschool has evolved. For example, team meetings and family support networks are conducted via videoconference, and families are also using the technology to access courses on specific skills such as Australian Sign Language or Braille Literacy (McCarthy, 2007). Videoconferencing is also enabling links between students at one of RIDBC’s campus schools and hearing impaired students at a sister school in the US (North, 2007).

Several international visitors from major centres for children with sensory disabilities have visited the project and requested additional information so that they might replicate the model in their own country.

Policy analysis

In line with the Invest to Grow objectives, RIDBC’s initial findings from the first phase of the evaluation suggest that the Remote Early Learning Program is contributing to the evidence base about:

- access and delivery of early intervention childhood disability services; and
- distance service delivery models that demonstrate sustainable capacity building.

Early intervention for children in rural and remote communities

The development of “remote” and “real time” pedagogical approaches to support young children with sensory disabilities addresses longstanding equity issues for individuals in rural and remote communities. The technological approaches utilised in the model have obvious application for disability service provision to other client groups living in areas where specialist services may be limited. As the evaluators point out, the model also has
applicability more broadly than early childhood. For example, it could be adapted for use with in-home support in the aged care sector (Dally & Conway, 2007). In addition, the development of generic support and teaching materials (e.g., videos and DVD’s which describe the impact of sensory disabilities and provide explicit modelling and demonstrations of strategies to address these difficulties) has obvious potential for distribution to neighbouring and developing countries where the provision of educational services for children with sensory disabilities is limited (Dally & Conway, 2007).

Sustainable community capacity building

In terms of sustainability, the project contributes on the three capacity building levels of levels of human, social and institutional capital (Rogers, 2006):

Human capital—The value of the remote model of service delivery is dependent on the capacity of the RIDBC therapists and educators to effectively train the people who are having direct contact with the child, that is, the parents/carers and local service providers. The interim evaluation data indicates the training provides associated benefits for the parents and other family members such as the sense of resiliency and empowerment engendered by increased confidence, lower stress and growing optimism (Hansen, Morrow, & Bandstra, 2006).

Social capital—There is significant professional benefit for remote area service providers for whom such specialised knowledge and training is not typically available. The use of collaborative networks between local providers and RIDBC means that they are encouraged in turn to share their new skills and knowledge through their own local provider networks.

The collaborative networks between RIDBC and local service providers are established in order to create enduring, rather than temporary, links between these agencies and there is mutual respect for the role and expertise all providers bring to the relationship.

Institutional capital—A range of generic and customised products (CDs, DVDs and videos) and pedagogical processes will endure beyond the life of the project, and potentially for broader client and service application. In addition, the development of technology to establish videoconferencing links in remote areas has been a major output of the project.

Cost-effectiveness modeling

Other service providers who see potential application in their own area of service for the project model, or elements of the model, will be keenly interested in both establishment and operational costs, as well as resourcing (including staffing) models that can be translated for application in various settings and contexts. However, the cost effectiveness of the program is difficult to determine based on interim evaluative data. It is anticipated that a more definitive picture will emerge in the final evaluation reports as the costs and funding sources will be more clearly distinguished.

Project evaluations

The RIDBC Remote Early Learning Program is being externally evaluated by University of Newcastle*. Interim evaluation data has been utilised in this profile to demonstrated project impacts evidenced to date. The evaluation is utilising a mixed methodology which involves surveying and interviewing of key stakeholders at critical project points. There are elements of appreciative inquiry in the methodology as feedback is being immediately utilised by project staff to further develop the project model.

Project related publications

References

University of New Mexico. (2005). *Project for New Mexico children and youth who are deafblind* [online] at http://cdd.unm.edu/deafblind/

Contact

Jan North
Manager, Children's Services
Royal Institute for Deaf and Blind Children
Private Bag 29, PARRAMATTA, NSW, 2124
Tel 02 9872 0311
Fax 02 9872 0824
Email jan.north@ridbc.org.au

Website

http://www.ridbc.org.au

More information

More information on RIDBC's Remote Early learning Program Project and *Promising Practice Profiles* can be found on the PPP pages of the Communities and Families Clearinghouse Australia website at http://www.aifs.gov.au/cafca/ppp/ppp.html.

Communities and Families Clearinghouse Australia

Australian Institute of Family Studies.
Level 20, 485 La Trobe Street, Melbourne Vic 3000.
Tel: (03) 9214 7888. Fax: (03) 9214 7839.
Email: cafca@aifs.gov.au.